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ABSTRACT: Consistent interactions that can be added to a free, Abelian gauge theory
comprising a finite collection of BF models and a finite set of two-form gauge fields (with
the Lagrangian action written in first-order form as a sum of Abelian Freedman-Townsend
models) are constructed from the deformation of the solution to the master equation based
on specific cohomological techniques. Under the hypotheses of smoothness in the coupling
constant, locality, Lorentz covariance, and Poincaré invariance of the interactions, supple-
mented with the requirement on the preservation of the number of derivatives on each field
with respect to the free theory, we obtain that the deformation procedure modifies the
Lagrangian action, the gauge transformations as well as the accompanying algebra. The
interacting Lagrangian action contains a generalized version of non-Abelian Freedman-
Townsend model. The consistency of interactions to all orders in the coupling constant

unfolds certain equations, which are shown to have solutions.
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1. Introduction

The power of the BRST formalism was strongly increased by its cohomological develop-
ment, which allowed, among others, a useful investigation of many interesting aspects re-
lated to the perturbative renormalization problem [[]-[], anomaly-tracking mechanism [f]-
[[d], simultaneous study of local and rigid invariances of a given theory [[1]] as well as to
the reformulation of the construction of consistent interactions in gauge theories [[2]- [L6]
in terms of the deformation theory [[[]—[[9 or, actually, in terms of the deformation of the
solution to the master equation R0, PIJ.

The scope of this paper is to investigate the consistent interactions that can be added to
a free, Abelian gauge theory consisting of a finite collection of BF models and a finite set of
two-form gauge fields (described by a sum of Abelian Freedman-Townsend actions). Each
BF model from the collection comprises a scalar field, a two-form and two sorts of one-forms.
We work under the hypotheses that the interactions are smooth in the coupling constant,
local, Lorentz covariant, and Poincaré invariant, supplemented with the requirement on



the preservation of the number of derivatives on each field with respect to the free theory.
Under these hypotheses, we obtain the most general form of the theory that describes
the cross-couplings between a collection of BF models and a set of two-form gauge fields.
The resulting interacting model is accurately formulated in terms of a gauge theory with
gauge transformations that close according to an open algebra (the commutators among
the deformed gauge transformations only close on the stationary surface of deformed field
equations).

Topological BF models [@] are important in view of the fact that certain interacting,
non-Abelian versions are related to a Poisson structure algebra [R3] present in various
versions of Poisson sigma models [24-B(], which are known to be useful at the study of
two-dimensional gravity [B]-[0] (for a detailed approach, see [[H]). It is well known that
pure three-dimensional gravity is just a BF theory. Moreover, in higher dimensions general
relativity and supergravity in Ashtekar formalism may also be formulated as topological BF
theories with some extra constraints [[iJ-[5]. Due to these results, it is important to know
the self-interactions in BF theories as well as the couplings between BF models and other
theories. This problem has been considered in literature in relation with self-interactions
in various classes of BF models [[[f-f2] and couplings to matter fields [p3] and vector
fields [54, B3] by using the powerful BRST cohomological reformulation of the problem of
constructing consistent interactions. Other aspects concerning interacting, topological BF
models can be found in [5d-Fg]. On the other hand, models with p-form gauge fields play
an important role in string and superstring theory as well as in supergravity. Based on
these considerations, the study of interactions between BF models and two-forms appears
as a topic that might enlighten certain aspects in both gravity and supergravity theories.

Our strategy goes as follows. Initially, we determine in section P the antifield-BRST
symmetry of the free model, which splits as the sum between the Koszul-Tate differen-
tial and the exterior derivative along the gauge orbits, s = § + «. Then, in section P we
briefly present the reformulation of the problem of constructing consistent interactions in
gauge field theories in terms of the deformation of the solution to the master equation.
Next, in section [] we determine the consistent deformations of the solution to the master
equation for the model under consideration. The first-order deformation belongs to the
local cohomology H(s|d), where d is the exterior spacetime derivative. The computation
of the cohomological space H°(s|d) proceeds by expanding the co-cycles according to the
antighost number and further using the cohomological groups H(v) and H(d|d). We find
that the first-order deformation is parameterized by 11 types of smooth functions of the
undifferentiated scalar fields, which become restricted to fulfill 19 kinds of equations in
order to produce a deformation that is consistent to all orders in the coupling constant.
With the help of these equations we show that the remaining deformations, of orders 2 and
higher, can be taken to vanish. The identification of the interacting model is developed
in section ] All the interaction vertices are derivative-free. Among the cross-couplings
between the collection of BF models and the set of two-form gauge fields we find a gen-
eralized version of non-Abelian Freedman-Townsend vertex. (By ‘generalized’ we mean
that its form is identical with the standard non-Abelian Freedman-Townsend vertex up
to the point that the structure constants of a Lie algebra are replaced here with some



functions depending on the undifferentiated scalar fields from the BF sector.) Meanwhile,
both the gauge transformations corresponding to the coupled model and their algebra are
deformed with respect to the initial Abelian theory in such a way that the new gauge
algebra becomes open and the reducibility relations only close on-shell (on the stationary
surface of deformed field equations). It is interesting to mention that by contrast to the
standard non-Abelian Freedman-Townsend model, where the auxiliary vector fields are
gauge-invariant, here these fields gain nonvanishing gauge transformations, proportional
with some BF gauge parameters. In the end of section | we comment on several classes
of solutions to the equations satisfied by the various functions of the scalar fields that
parameterize the deformed solution to the master equation. Section [ closes the paper
with the main conclusions. The present paper also contains 4 appendices, in which various
notations used in the main body of the paper as well as some formulas concerning the

gauge structure of the interacting model are listed.

2. Free model: Lagrangian formulation and BRST symmetry

The starting point is given by a free theory in four spacetime dimensions that describes a
finite collection of BF models and a finite set of two-form gauge fields, with the Lagrangian
action

SolAg Hvo B Vi Vil = [ dta (B0, + 4810y, 45

+IVIVEL 4+ LVAVE) (2.1)

Each of the BF models from the collection (to be indexed by lower case letters a, b, etc.)
comprises a scalar field ¢,, two kinds of one-forms AZ and Hj, and a two-form BYY. The
action for the set of Abelian two-forms decomposes as a sum of individual two-form actions,
indexed via capital Latin letters (A, B, etc.). Each two-form action is written in first-order
form as an Abelian Freedman-Townsend action, in terms of a two-form V" and of an
auxiliary vector VHA, with the Abelian field strength Fﬁj = 8[“Vlff. The collection indices
from the two-form sector are lowered with the (non-degenerate) metric k4p induced by the
Lagrangian density § (V4" F, + VAVY) from (R) (ie. Fi” = kapFP") and are raised
with its inverse, of elements k4B. Of course, we consider the general situation, where
the two types of collection indexes run independently one from each other. Everywhere
in this paper the notation [u...v] signifies complete antisymmetry with respect to the
(Lorentz) indices between brackets, with the conventions that the minimum number of
terms is always used and the result is never divided by the number of terms. Action (P.1])
is found invariant under the gauge transformations

0 Ay, = Oue®, OcHy = —20"¢,,, Ocpa=0,
5 BYY = —30,et" 0V =m0, 0V =0,

a
uv
It is easy to see that the above gauge transformations are Abelian and off-shell (everywhere

where all the gauge parameters are bosonic, with €?, and €;”” completely antisymmetric.

in the space of field histories, not only on the stationary surface of field equations for (R.1))),



second-order reducible. Indeed, related to the first-order reducibility, we observe that if we

make the transformations e}, (0) = —38)‘9§W, P (0) = —40\0,"F  €2X(0) = 9104, with s
arbitrary, bosonic functions, completely antisymmetric (where applicable) in their Lorentz
indices, then the corresponding gauge transformations identically vanish, o, H, = 0,
55(9)3(‘1“/ =0, 55(9)‘/,;?/ = 0. The last two transformation laws of the gauge parameters can
be further annihilated by trivial transformations only: €4”(8) = 0 if and only if 62 = 0
and e (@) = 0 if and only if 4 = 0, so there is no higher-order reducibility associated
with them. By contrast, the first one can be made to vanish strongly via the transforma-
tion 0, (w) = ~40°u, . with wl,,
function (which indeed produces €f, (6 (w)) = 0), but there is no nontrivial transformation
of wy,,,, such that 65, becomes zero. Thus, the reducibility of (2)-(R.3) stops at order
2 and holds off-shell.

In order to construct the BRST symmetry of this free theory, we introduce the fi-

a

with w an arbitrary, completely antisymmetric, bosonic

eld/ghost and antifield spectra

O = (AL, Hjiypas BEY, Vi Vi) (2.4)

B, = (A2, H 6™, B, Vi VY, (25)

™ = (0 Cphy . Cil) (2.6)

Moy = (M Ca s CH') (2.7)

= (Czyp’”gypA’CA) s Ty = (G o0 C) (2.8)
1% = (Chupa) s i = (G2 (2.9)

The fermionic ghosts n®! respectively correspond to the bosonic gauge parameters e*! =
(e“, € ehvr, ef}), the bosonic ghosts for ghosts n*? are due to the first-order reducibility
relations (the f-parameters from the previous transformations), while the fermionic ghosts
for ghosts for ghosts n®3 are required by the second-order reducibility relations (the w-
function from the above). The star variables represent the antifields of the corresponding
fields/ghosts. (Their Grassmann parities are respectively opposite to those of the associated
fields/ghosts, in agreement with the general rules of the antifield-BRST method.)

Since both the gauge generators and the reducibility functions are field-independent,

it follows that the BRST differential reduces to
s=0+", (2.10)

where § is the Koszul-Tate differential and v denotes the exterior longitudinal derivative.
The Koszul-Tate differential is graded in terms of the antighost number (agh, agh (6) = —1)
and enforces a resolution of the algebra of smooth functions defined on the stationary sur-
face of field equations for action (2.1]), C*° (X), X : §Sy/d®* = 0. The exterior longitudinal
derivative is graded in terms of the pure ghost number (pgh, pgh (7) = 1) and is correlated
with the original gauge symmetry via its cohomology at pure ghost number 0 computed
in C*° (¥), which is isomorphic to the algebra of physical observables for the free theory.
These two degrees do not interfere (agh (v) = 0, pgh (6) = 0). The pure ghost number and



antighost number of BRST generators (R.4)-(.9) are valued as follows:

pgh (%) =0, pgh(n*)=1, pgh(n*?) =2, pgh(n™)=3, (2.11)
pgh (2%,) = pgh (n%,) = peh (n%,) = peh (n%,) =0, (2.12)
agh (®°) = agh (n™') = agh (n*?) = agh (n**) =0, (2.13)

(2.14)

agh (@ZO) =1, agh (7721) =2, agh (77;2) =3, agh (7723) =4,

")

where the actions of § and ~ on them read as

0P = o™ = 6n*? = on* =0, (2.15)

SAM = —0,Bl, SHM = —0'p,, &0 =0"H, (2.16)
§By, = =30, A%, OVM = —3FY, Vit =— (Vi +8,V)"), (2.17)
oy = =0, A, SCi =W HM, on's, = 0,B, (2.18)
SO =PI Vi N, CHP = —plt Cprl, (2.19)
Ompton = =0 ey, 0CH = 0,C,  dCy = oy, (2.20)
YPo = VMay = May = Vs = 0, (2.21)

YAy = 0un®, ~H, =20"Cy,, ~BL = —=30m5"", (2.22)

e =0= nyA, nylfL = aw,pA@pCA)‘, yn* =0, (2.23)

O, = =30°CL,,, b’ = 49\nlPX, 70A = 8MC'A, (2.24)
NCh,, = 407Ch, N, PN =4Ch =0, ~C8, = 0. (2.25)

The overall degree of the BRST complex is named ghost number (gh) and is defined
like the difference between the pure ghost number and the antighost number, such that
gh (6) = gh(7) = gh(s) = 1. The BRST symmetry admits a canonical action s- = (-, S) in
an antibracket structure (, ), where its canonical generator is a bosonic functional of ghost
number 0 (e (S) =0, gh (S) = 0) that satisfies the classical master equation (g, S) =0
In the case of the free theory under discussion, the solution to the master equation takes
the form

S =50+ / d'z (AF0,n® + 2H#0" CL, — 3B Opnh”

Feup VAP CY — 305 0P CL,,, + A Ol ™

+CEADC ) + ACTHP D WM) (2.26)

and contains pieces of antighost number ranging from 0 to 3.

3. Deformation of the solution to the master equation: a brief review

We begin with a “free” gauge theory, described by a Lagrangian action S& [®20], invariant

under some gauge transformations §.®*° = Z° €™, i.e. 5<1>f90 Z°§, = 0, and consider the

problem of constructing consistent interactions among the fields <I>O‘0 such that the couplings
preserve both the field spectrum and the original number of gauge symmetries. This matter



is addressed by means of reformulating the problem of constructing consistent interactions
as a deformation problem of the solution to the master equation corresponding to the “free”
theory [0, R]. Such a reformulation is possible due to the fact that the solution to the
master equation contains all the information on the gauge structure of the theory. If an
interacting gauge theory can be consistently constructed, then the solution S to the master
equation (5’ , 5‘) = 0 associated with the “free” theory can be deformed into a solution S

S—8=8+A51+ NS+ :§+A/dea+>\2/dDmb+--~ (3.1)
of the master equation for the deformed theory
(8,5) =0, (3.2)

such that both the ghost and antifield spectra of the initial theory are preserved. Eq. (B.2)
splits, according to the various orders in the coupling constant (deformation parameter) A,
into a tower of equations:

(5,5) =0, (3.3)

2(51,5) =0, (3.4)

2(852,8) + (51,51) =0, (3.5)
(93,8) + (S1,82) =0, (3.6)

Eq. (B.3) is fulfilled by hypothesis. The next equation requires that the first-order
deformation of the solution to the master equation, S, is a co-cycle of the “free” BRST
differential, sS; = 0. However, only cohomologically nontrivial solutions to (B.4) should be
taken into account, as the BRST-exact ones can be eliminated by some (in general nonlin-
ear) field redefinitions. This means that S; pertains to the ghost number 0 cohomological
space of s, HY (s), which is generically nonempty because it is isomorphic to the space of
physical observables of the “free” theory. It has been shown (by the triviality of the an-
tibracket map in the cohomology of the BRST differential) that there are no obstructions
in finding solutions to the remaining equations, namely (B.H), (B.6), etc. However, the re-
sulting interactions may be nonlocal, and obstructions might even appear if one insists on
their locality. The analysis of these obstructions can be carried out by means of standard

cohomological techniques.

4. Consistent interactions between a collection of topological BF models
and a set of Abelian two-forms

This section is devoted to the investigation of consistent interactions that can be introduced
between a collection of topological BF models and a set of Abelian two-forms in four
spacetime dimensions. This matter is addressed in the context of the antifield-BRST
deformation procedure briefly addressed in the above and relies on computing the solutions

to eqs. (B.4)-(B.6), etc., with the help of the free BRST cohomology.



4.1 Standard material: basic cohomologies

For obvious reasons, we consider only smooth, local, Lorentz covariant, and Poincaré invari-
ant deformations (i.e., we do not allow explicit dependence on the spacetime coordinates).
Moreover, we require the preservation of the number of derivatives on each field with re-
spect to the free theory (derivative-order assumption). The smoothness of the deformations
refers to the fact that the deformed solution to the master equation, (B.1), is smooth in the
coupling constant A and reduces to the original solution, (R.26), in the free limit (A = 0).
The preservation of the number of derivatives on each field with respect to the free theory
means here that the following two requirements must be simultaneously satisfied: (i) the
derivative order of the equations of motion on each field is the same for the free and for
the interacting theory, respectively; (ii) the maximum number of derivatives allowed within
the interaction vertices is equal to 2, i.e. the maximum number of derivatives from the free
Lagrangian. If we make the notation Sy = [ d'z a, with a a local function, then eq. (B4),
which we have seen that controls the first-order deformation, takes the local form

sa =0,m!, gh(a)=0, e(a)=0, (4.1)

for some local m#. It shows that the nonintegrated density of the first-order deformation
pertains to the local cohomology of s in ghost number 0, a € H (s|d), where d denotes the
exterior spacetime differential. The solution to (@) is unique up to s-exact pieces plus
divergences

a—a+sb+9,n", gh(b)=—-1,¢e(b) =1, gh(n") =0, e(n") =0. (4.2)

At the same time, if the general solution to (JL.I]) is found to be completely trivial, a =
sb + Oynt, then it can be made to vanish a = 0.
In order to analyze eq. (|.1)) we develop a according to the antighost number

I
a= Zai, agh (a;) =1, gh(a;)) =0, e(a;)=0, (4.3)
=0

and assume, without loss of generality, that the above decomposition stops at some finite
value of I. This can be shown, for instance, like in [f9] (section 3), under the sole assumption
that the interacting Lagrangian at the first order in the coupling constant, ag, has a finite,
but otherwise arbitrary derivative order. Inserting decomposition ([.3) into eq. (1)) and
projecting it on the various values of the antighost number, we obtain the tower of equations

N~
yar = BM(TTL) s (4'4)
I-1)#
Say +~as_q = a#(m) , (4.5)
i—1)*
5ai+fyai_1=3u(m) N A (4.6)

DM DM
where (g”l% ) are some local currents with agh (g”l% > =i. Eq. (.4) can be replaced
i=0,1

in strictly positive values of the antighost number by

var =0, I>0. (4.7)



Due to the second-order nilpotency of v (72 = 0), the solution to (L.7) is clearly unique up
to y-exact contributions

ar — ay —{—’yb[, agh (b[) =1, pgh (b[) =1-1, €(b1) =1. (4.8)

Meanwhile, if it turns out that aj exclusively reduces to y-exact terms, a; = by, then it can
be made to vanish, a;y = 0. In other words, the nontriviality of the first-order deformation
a is translated at its highest antighost number component into the requirement that a; €
H' (v), where H! () denotes the cohomology of the exterior longitudinal derivative 7 in
pure ghost number equal to I. So, in order to solve eq. ([.1]) (equivalent with ([.7) and
({.9)-([.6)), we need to compute the cohomology of v, H (), and, as it will be made clear
below, also the local homology of §, H (6|d).
On behalf of definitions (R.21))-(R.27) it is simple to see that H (v) is spanned by

A A
Fx = (pa, 0, A%, 0" H2, 0, B1 VAL B ) (4.9)
the antifields
X*A = (¢(§07 77;1 bl 77;2 9 7723) ) (410)
all of their spacetime derivatives as well as by the undifferentiated ghosts
nt = (n“,CA,néf””A, fjm>. (4.11)
In formula (.9) we used the notation
A (A A 1 ApX
F/JVP = (9[HVVP], V/»“’ = iewp)\V P, (412)

(The derivatives of the ghosts nT are removed from H () since they are y-exact, in agree-
ment with the first relation from (R.29), the last formula in (.24)), the second equation in
([B-24), and the first definition from (P:25).) If we denote by e™ <77T> the elements with
pure ghost number M of a basis in the space of the polynomials in the ghosts (f.11]), then
it follows that the general solution to eq. (f.7) takes the form

ar = ar (IF3), aD e’ (n") (4.13)

where agh (ay) = I and pgh (eI) = I. The notation f([¢]) means that f depends on ¢
and its spacetime derivatives up to a finite order. The objects a;; (obviously nontrivial in
HO (v)) will be called “invariant polynomials”. The result that we can replace eq. (J£4)
with the less obvious one (1) is a nice consequence of the fact that the cohomology of
the exterior spacetime differential is trivial in the space of invariant polynomials in strictly
positive antighost numbers.

Inserting (f.13) in () we obtain that a necessary (but not sufficient) condition for the
existence of (nontrivial) solutions ay_; is that the invariant polynomials oy are (nontrivial)
objects from the local cohomology of Koszul-Tate differential H (§|d) in antighost number
I > 0 and in pure ghost number 0,

(-1 (-1 (I-n¥
dar =0, j , agh| J =I1—-1, pghl| j =0. (4.14)



We recall that the local cohomology H (d|d) is completely trivial in both strictly positive
antighost and pure ghost numbers (for instance, see [p(], Theorem 5.4, and [p1] ), so from
now on it is understood that by H (d|d) we mean the local cohomology of ¢ at pure ghost
number 0. Using the fact that the free model under study is a linear gauge theory of
Cauchy order equal to 4 and the general result from [p0), f1]|, according to which the local
cohomology of the Koszul-Tate differential is trivial in antighost numbers strictly greater
than its Cauchy order, we can state that

Hjy(6|d) =0 forall J>4, (4.15)

where H j (6|d) represents the local cohomology of the Koszul-Tate differential in antighost
number J. Moreover, if the invariant polynomial «j, with agh(ay) = J > 4, is trivial in
Hyj (8|d), then it can be taken to be trivial also in H'™ (8|d)

(HH (HH
aJ:(SbJH—l—BMc ,agh(aJ):Jzél =>aJ:5ﬁJ+1+8M’y R (4.16)

with both 841 and (’{/)“ invariant polynomials. Here, Hf,n" (0|d) denotes the invariant
characteristic cohomology in antighost number J (the local cohomology of the Koszul-Tate
differential in the space of invariant polynomials). (An element of H (§|d) is defined via
an equation like ([.14), but with the corresponding current an invariant polynomial.). This
result together with (f.15) ensures that the entire invariant characteristic cohomology in
antighost numbers strictly greater than 4 is trivial

HIvV(§|d) =0 forall J>4. (4.17)

The nontrivial representatives of H;(8|d) and of H™(8|d) for J > 2 depend neither

on <(9[ Ay],a Hj, 0, B F;ﬁ,p nor on the spacetime derivatives of F; defined in ([£9),

but only on the undlﬁerentlated scalar fields and auxiliary vector fields from the two-form
sector, (a, V 4). With the help of relations (.15)—(R.20), it can be shown that H" (|d)
is generated by the elements
8WA C*‘Wp)‘ 82WA
890a 890a890b
3
O"Wa H e g oo
padppOpc ‘
WA
" 0dpe D0

(Py (W))HPA = (H;;[uc;””“ + C;;Wc,j””)

H*HPYH?PH, (4.18)

where W = Wy (¢,) are arbitrary, smooth functions depending only on the undifferen-
tiated scalar fields ¢, and A is some multi-index (composed of internal and/or Lorentz

indices). Indeed, direct computation yields
§(PA (W) = o (Py (W)Y, agh (PAW)™) =3, (419

where we made the notation

2
OWA iy, O"Wa grelncrvel

wp _
(PA(W)) B agpa . 890aa§0b “ b



BW.
= A e (4.20)
o 0ppdpc

It is clear that (Py (W))"? is an invariant polynomial. By applying the operator § on it,
we have that

6 (Pa (W)Y = =0l (P (W)™, agh ((Px (W))"") =2, (421)
where we employed the convention

B oW o O*Wy
Opa ¢ 000y

Since (Py (W))" is also an invariant polynomial, from (§£.21]) it follows that (Py (W))"”
belongs to Hi™ (§|d). Moreover, further calculations produce

(Py (W)™ HHY (4.22)

5 (Pa (W)™ =l (Py (W), agh (Py (W))") =1, (4.23)
with oW
A rrx
(P (W) = oS (4.24)

Due to the fact that (Py (W))" is an invariant polynomial, we deduce that (P (W))"”
pertains to Hi™ (§|d). Using again the actions of § on the BRST generators, it can be
proved that Hi" (§|d) is spanned, beside the elements (Py (W))*” given in ({.2), also by

the objects
@u(f) = leCZ o (P/<1 (f))ucjw - %%um <% (Pfé (f))Wp Vj\
) -

and by the undifferentiated antifields 77  (according to the first definition from (P.20)).
In formula (25) f{ = f{ (pa) are some arbitrary, smooth functions of the undifferentiated
scalar fields ¢, carrying at least an internal index A from the two-form sector and possibly
a supplementary multi-index A. The factors (Pg! (f))“, (P{ (f))", and (P3! (f))Wp read
as in ({:24), (£23), and ({.20)), respectively, with Wy (pa) — fi' (¢a). Concerning Q4 (f),

we have that

0Qa (f) =0, (Qa(f))", agh((Qa(f)") =2, (4.26)
where we employed the notation
(Qn (N = FRCT + e (PR (), Vi + 3 (PR (D), Var) - (427)

With the help of definitions (B-I5)—(R-20) it can be checked that

5(Qa ()" =0 @a ()™, agh((@a(F)™) =1, (4.28)

where we made the notation

(@ (N = [V + (PR (1), Var) (4.29)

,10,



Direct computation shows that the objects

* KUY Y RPN
Ra(9) = 91" <CAMVBM + Lo VI VP )

—cuon (PP (9)" VA + 4 (PP (9)) V) Vi (4.30)
satisfy
6B (9) = " (Ra(9)),, agh ((Ra(9)),) =1, (4.31)
with
(RA (g))ﬂ = —Euvpi <g/1€BVZVp + % (PJI\LlB (g))l/ VX) Vé\' (4'32)

In formulas ((.30) and (32) g4Z = g{'¥ (p.) stand for some smooth functions of the
undifferentiated scalar fields that in addition are antisymmetric with respect to A and B

gr" = g3 (4.33)
Looking at their expressions, it is easy to see that all the quantities denoted by @s or Rs
are invariant polynomials. Putting together the above results we can state that H™ (6|d)
is spanned by (Py (W))* listed in ({:22), (Qa (f))" expressed by (£:27), Ra (g) given in
([£.30), and the undifferentiated antifields 7%, and 7 (in agreement with the last formula
from (R.19) and the first definition in (R.1§)).

In contrast to the spaces (H;(8]d)) >2 and (H'™(5|d)) >2, which are finite-dimensio-
nal, the cohomology Hi(d|d) (known to be related to global symmetries and ordinary
conservation laws) is infinite-dimensional since the theory is free. Fortunately, it will not
be needed in the sequel.

The previous results on H(d|d) and H™(§|d) in strictly positive antighost numbers
are important because they control the obstructions to removing the antifields from the
first-order deformation. More precisely, we can successively eliminate all the pieces of
antighost number strictly greater that 4 from the nonintegrated density of the first-order
deformation by adding solely trivial terms, so we can take, without loss of nontrivial objects,
the condition I < 4 into ([.J). In addition, the last representative is of the form ([f.13),

where the invariant polynomial is necessarily a nontrivial object from HI™ (4|d).

4.2 First-order deformation

In the case I = 4 the nonintegrated density of the first-order deformation (see ([L.3))
becomes
a=ag+a;+az+ a3z -+ aq. (4.34)

We can further decompose a in a natural manner as a sum between two kinds of deforma-
tions
a = a®¥ 4 ¢ (4.35)

where aB¥) contains only fields/ghosts/antifields from the BF sector and a(™) describes
the cross-interactions between the two theories. Strictly speaking, we should have added
to (f39) also a component a(V) that involves only the two-form field sector. As it will be
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seen at the end of this subsection, a(V) will be automatically included into ™). The piece

aBY) is completely known (see [B0, F3, FJ)) and (separately) satisfies an equation of the
type (). It admits a decomposition similar to ([£.34)

a®BF) = (P 1 (BF) 4 (BE) 4 o(BF) | (BF) (4.36)
where
BF VoA _a c a v
afl ) = (Pab (W))M r n CZ”P}‘ - % (Pab (M));wp)\n nbng PA

e ( (P 1)

57557 (Pavea (MDY P ) (4.37)

B0

70N o
> Naapyé

ai(’,BF) = (Pab (W))Wp (_naCZVP + 4Aa>\CZVP)\)
2 (6 (Pay (W)™ B4 4 4 (P (W) P + W) CF,
4 (PG (M), (o ni? — 45/ no)
— (625 (M) ., By + 4P (M), 1 + My n ) 'ni

A v
—cpopr (PP OD) 57— gy (Pasea (M), A3

VpA

af
+3 (Pabcd (M))My B;K +2 (Pabcd (M))M 77:;(;))\
+Mapeanes on) 1°1°n%, (4.38)
BF v a a *av,
af™) = (P (W)™ (0, = 3A%C,,) = 2(3 (P (W) B

W ) Chy = 3 (Pl (M) (300 By = 341 )

+ (3(P5 (M), B+ Mgy, ) nin? + 3 (= (PG, (M), A7

M) 0’ + (3 (Pl (M)),,, A +12 (P, (M), B33

FAMGis,) AR e (P (M) ey

—6MG, B Bt ™ + e (3 (Papea (M) ., AAL

+12 (Papea (M), B33 AR + 4Mapeanj, A3 — GMabchZCJB;§> n°n*
.

e (2(P (M) Aue — 2000y
«
+ (P () , Bgﬁ> e, (4.39)
«

ol = (P (W)Y (=0 HL + 24 CL, ) + Woy (2BjeC — oo

- 12 —



— (PG (M), A5 (n B + §Abyer ) — Mg, (B B

A A+ 3B Al )

#2000 ((PO0OD) B - AT )

42 ((Pasea (M), A + 38Manca Bl ) AL A5, (4.40)
a(()BF) = —Wu A" H), + $ MG, A% AL BE
+%€ﬂyﬂ)\ <MabBaw,Bbp)\ — ﬁMabchZAZAZAi) . (441)

In (£.37)-(£.41)) the quantities denoted by (Pgy(W))H1-#k, (P, (M))H1-Hk (P (M ))H1-+
and (Pypeq (M))*#* read as in (L1§), ([E20), (B.29), and (E24) for k =4, k = 3, k = 2,
and k = 1, respectively, modulo the successive replacement of Wy (¢,) with the functions
Waba be,

the undifferentiated scalar fields and satisfy various symmetry/antisymmetry properties:

M and Mgp.q, respectively. The last four kinds of functions depend only on

M, are antisymmetric in their lower indices, M ab gre symmetric, and Mp.q are completely
antisymmetric.

Due to the fact that B and o) involve different types of fields and a(BF) separately
satisfies an equation of the type ([L)), it follows that o) i subject to the equation

sa(™) = 8ﬂm(im)”, (4.42)

for some local current m (™ In the sequel we determine the general solution to (fE42)) that
complies with all the hypotheses mentioned in the beginning of the previous subsection.

In agreement with ([l.34), the solution to the equation saint) — 8Mm(int)“ can be
decomposed as . . _ _ )
(i) — a(()lnt) n agmt) 4 agnt) i aglnt) + aff“t), (4.43)

where the components on the right-hand side of ({£.43) are subject to the equations

yag™ =0, (4.44)

_ ) _py(int)u
5™ 4 4qlm) — aH(lcml) . k=T14. (4.45)

The piece agm) as solution to eq. ([l.44) has the general form expressed by ([L.13) for I = 4,
with ay from HI™(8|d) and e* spanned by

(n s e e Cly s i 7 C4, CACE, G ) (4.46)

Taking into account the result that the general representative of H %V (§|d) is given by (f.1§)

and recalling that agnt) should mix the BF and the two-form sectors (in order to provide

(3

cross-couplings), it follows that the eligible representatives of e* from ([4f) allowed to

(int)

enter a, ’ are those elements containing at least one ghost of the type C A Therefore, up
to trivial, v-exact terms, we can write

agnt) = ﬁg,uup)\ <(PabA (N))MVpA 77a77bCA + (PAB (N))MVpA CACB)

,13,



+ (P (N)), , , CApHeA, (4.47)

UV PA

where the objects denoted by (Papa(N))*PA, (Pap(N))#*PA, and respectively (P3(N))uwpx
are expressed as in (JL1§), being generated by the arbitrary, smooth functions of the un-
differentiated scalar fields Ngpa (¢m), Nap (¢m), and N§ (¢m), respectively. In addition,
the functions Ngpa () and Nap (o) satisfy the symmetry/antisymmetry properties

Napa (m) = —Noaa (Pm) >, Nag (om) = Npa (om) - (4.48)

Inserting ({.47) into eq. (f.45) for £ = 4 and using definitions (R.15)-(R.25)), after
some computation we obtain the interacting piece of antighost number 3 from the first-
order deformation in the form

a§™ = = (P§ (V) (cAng”uwA p)

) M (A’iCA + %anAA)
+ (Pap (N >>WCACA — (3(Pua (N)),, B3
2 (Pasa (V) i + 3 Navanji o ) 14|

+Qan ()1 C* + 5:Qube (F) 101"
hass (Q (NP +Qu (F) C2277) (4.49)

3 (P

(Solution (f.49) embeds also the general solution to the homogeneous equation ya gm) =0.)

The elements denoted by Qqa (f), Qave (f), Q% (f), and Qq (f) are generated via formula
(#E25) by the smooth functions (of the undifferentiated scalar fields) f4 B A b fAe, and
fa , respectively. In addition, the functions f “be are completely antisymmetric in their BF
collection indices.

The interacting component of antighost number 2 results as solution to eq. ({.45)) for

k = 3 by relying on formula ([49) and definitions (R.15)—(R.2H), and takes the form
a;(int) = 1 (Pap (N)™ <CAVB . CApCB,\)

— 2 (Papa (N))* [ﬁaﬁbel‘, + EuvpA (2140”)7766%A + AapAbACA)]

(PG (N)),0, (CABE + 3C0 + eV 92 ?)

e ((Papa (N)),, B + §Navanyi, ) (4504 +0C)

+ 216" (Qa (1)), Copp = (Qaa (1), (A™CH 497 CH)

— Q% ()" <5aﬁ75AZ773ﬁ — Epapyl naﬁ”)

—5 (Qave ()" Agin”. (4.50)

Using definitions (R.1§)-(R.2H), we obtain

5al2(int) = dcg +yer + O + ha, (4.51)
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where
¢ = ((Pap ()" C* + § (Passs (N))
~cagns (PR ()Y 1sP%) ViP 42 (Nom; = (P§ (V) A3 ) C4
+ ((Qua ()™ C* + 3 Que ()" ') B

+3 guypAnuupVBA (faACA 2 abcn n >

_§5MVpANabAB;?/B; C4 + heaps (Q% ()™ Brhne?

LB Veanhvo, (4.52)

er = A’ (( abB( )), VP + NaygV*PH) +2(P§ (N)),, Co' BLY
—uapys?? (P4 (N)), VA + NgV*Br) — aNg A C;
FNaa B VA — 7 (L (Pyya (N)), AL + Napa By ) AL,
—C ((Pap (N)), VP 4 NogV*Pr) — etvPX £5, B Vg , O3
+(Qaa ()" (AZCH + S VA™) = (Que (£ AL AL
+e P [ BV, ASn© + 5t (Qa (£)) 1 Ci
4@ ()™ (Semprt® B = eyay ALie™)
+1 B Vg, (4.53)

==

— (NapC™ + ENapn®n = £agys Nang™®) VB 12 (NG A

+ (P§(N)), BI") C* 4+ (P (N), (6CH " + eap,sV 4320
~ (Pap (N)), (CAVEm — Lemrrcicf)

—eM"PX Ny a ByS <77b034 + AKCA> — 3 (Papa (N)), "V
e (P (N)), A% (°C5 + 504 + FRO B Vit

+ (Qaa (N (A3C" + n“OA) 3 <Qabc (" A

—e P BV (JECA + 3B ) = devasy (Qa ()™ €20

3 Q% (N (2asaALne™ = 2yasy nbnaﬁ”) (4.54)

b = ((Pan (M) C4 + 4 (Pavsz (N 0 = 2agns (P (N 2P°) 1,
+ (NABCA + A Noppn™n® — eawN%nSﬁ”‘s) VB, (4.55)

If we make the notation

agnt) _ al2(int) (456)

Il

|
Q

N
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then (4.51)) is equivalent with the equation
5agint) = ver + aujil + hy. (4.57)

Comparing ([.57) with eq. ([E45) for k = 2, we obtain that a necessary condition for the
existence of a local agmt) is

hi = dga +vf1 + 0uly, (4.58)

with go, f1, and I{' local functions. We show that eq. (f:5§) cannot hold (locally) unless
h1 = 0. Indeed, assuming ([[.5§) is satisfied, we act with ¢ on it and use its nilpotency and
anticommutation with ~y, which yields the necessary condition

Shy =~y (=df1) + 9, (1) . (4.59)
On the other hand, direct computation provides
oh = 7 | (NapCil = NapAGn® + 2puap Ning™ ) V|
0 [~ (NapC* + SN0 = £agnsNgns™® ) VO] . (4.60)

Juxtaposing ([.59) and ({.60) and looking at definitions (R.15)—(R.25)), it follows that V B#

must necessarily be d-exact modulo d in the space of local functions. Since this is obviously

not true, we find that (f.59) cannot be satisfied and consequently neither does eq. ([.5§).

Thus, the consistency of ag ") Jeads to the equation

hi1 =0, (4.61)
which further implies that the functions N4, Nag, and N must vanish

Napa = Nag = N% = 0. (4.62)

Based on ({.63), from (f47), (E49), (E50), (E52), (E53), (56), and (E57) we get the

components of antighost number 4, 3, and 2 from the nonintegrated density of the first-

order deformation as .
ailnt) — 07 (4.63)

a§™ = Qua (f)n"C* + & Qe (f) 1 nP°
+heams (@ (N P1ED7 + Qa (£) 2297, (4.64)

ay™ = 2P (Qu (1), Cor = (Qua (N)" (A5C* +1°C})
5 (Qube (1)) Al = & Q% (F)" (2o ALns™®
a8 ) = ((Qaa (A" C* + 3 (Quse ()" nP0°) By
— 5P Vi < O+ %fﬁcn”nc) + 3R Ve

_%504576 (Qab (f))lw B;ﬂﬁgmé + %Rab (g) 77a77b
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+Ra (9) C* + feuwp R (9) i (4.65)

The objects Ry (9), Ra (g), and R®(g) are generated by formula ({.30) via the smooth

AB _AB aAB

functions of the undifferentiated scalar fields g/;”, ¢, and g**", respectively. All these

functions are antisymmetric in A and B and in addition gg‘bB are antisymmetric also in
their (lower) BF collection indices.

Replacing now expression ([.6J) into eq. (JL45]) for k = 2, we obtain that the interacting
piece of antighost number 1 from the first-order deformation is written as

™ = — e (Qa (1)) Cox = (Qua (H))" (AL
+%5wp>\77aVApA) + % Q% (f))W (5uaﬁwAz773ﬁ7 - lgwaﬁangﬁ)
+(Ra(9)" Cit = (Rap (9))" A%n” = Frepwpr (R* (9))" n?
+5WW\B;?/VBP( a G = faheASn 4'6>\aﬁvab77bﬁfy>
+3 (Qave ()" AL ALY, (4.66)

Using definitions (R.15)-(R.25), by direct computation we obtain that

5a’1(int) = dc1 +veg + Ough + ho, (4.67)
with
c1=-n"Viu <faAV*AM I 12fBbA*u L1 guup)\ BVAVB > 7 (468)
eo = —5&""Vau (- fabc v gcl?bBVBV) AZA?\
VAR~ AV ( AV 4 )
L(g"BVE + 59 Bow) VEVE, (4.69)

36 = Vaw (L1 4 sV P) 5V (Al
+l77ngu) _ %gaABVAVVBpnng _ P [faBA{?VA,\CB
— 3 Fi ALAS VAN — 2V Vi, (g B.o¢ — g2\BAS )], (4.70)
—fipn"VEVE. (4.71)
At this stage we act like between formulas ([£.5d) and (f.62). If we make the notation
agint) = all(int) —c, (4.72)

then ({.67) becomes .
8a{™ = yeq + Buj + ho, (4.73)

which, compared with eq. ([.45) for k = 1, reveals that the existence of agnt) demands

ho = 0g1 + v.fo + O,lf), (4.74)
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with g1, fo, and I/ some local elements. Using ([L.71]) and definitions (R.15)—(R.28)), straight-

int

forward calculation shows that ([.74) cannot be valid, and hence the consistency of a;
leads to the equation

ho =0, (4.75)

which requires the antisymmetry of the functions foap (= kam (%g) with respect to their
collection indices from the two-form sector

faAB = _faBA- (476)

With the help of.(kl.()ﬂ), (E63), ({69, (E7D), (E73), and (7€) we completely determine
a&mt) and then aémt) as solution to ([E45) for k = 1 in the form

af™ = e (Qa ()0 C — (Qua (F)M (ALCH
et V) + 4 Q% i (Svasn A" = SeasnBE7)
+(Ra (9))" Cit — (Ray (9))" Al 4,EW<R (9))" ™
+5WMB;?/VBP< O3t — [h.AS |5Aaﬁwab77bm)

HQun (O A 41V ( By g

a((]int) = 1PV, (— f 1 AC gbeVBy) A AL
—aifa VAH, + faBAZVAVVB“” + AV, B
+3 (96 Vie + 139" Baw) VAVE. (4.78)

Thus, we can write the final form of the interacting part from the first-order defor-
mation of the solution to the master equation for a collection of BF models and a set of
two-form gauge fields as

S%int) = /d4x oint) — /d4x (aéint) + agint) + agint) + a(()int)) ’ (4.79)

where the 4 components from ([£79) read as in formulas (£.64)-(£65) and (E77)-(E7S),
respectively The prev10us first-order deformation is parameterized by 7 functions, f4
ga?s 2 £, 142, 9, and g*45,
fields ¢4 and are antlsymmetrlc as follows: fabc in the indices {a,b, c}, gbe with respect
to {4, B} and {a,b}, and foap = kan f1% together with g4B, and ¢?4% in {A, B}. It is
easy to see that () also includes the general solution that describes the self-interactions
among the two-form gauge fields. Indeed, if we isolate from S’fnt) the part containing
the functions gABC, represent these functions as some series in the undifferentiated scalar

fields, g4 B (pq) = kABC + kAngpa + -+, where kABC and kAB(‘} are some real constants,
kABC’

abe?
which depend smoothly on the undifferentiated scalar

antisymmetric in their upper, capital indices, and retain only the terms including
then we obtain

S0 (1) = /d4m aV) = /d49€ <a§v) +al¥) ¢ a(()V)>
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— }AB, / d'e | (CH Vi + Sewn Vi Vi) €©

H e VI VECTN 4+ %Vugvjvg} , (4.80)

which has been shown in [fJ] to be the most general form of the first-order deformation
for a set of two-form gauge fields in four spacetime dimensions with the Lagrangian action
written in first-order form. In conclusion, the overall first-order deformation of the solution
to the master equation for the model under study is expressed like the sum between ([£.79)
and the piece responsible for the interactions from the BF sector

Sy = S\BF) 4 glint), (4.81)

where

SBF) / d*z aBF), (4.82)

with aBF) provided by (f36) and (37)-(E4T]). We recall that S%BF) is parameterized
by 4 kinds of smooth functions of the undifferentiated scalar fields: Wy, M¢, M, and

ab’
M peq, where MG, are antisymmetric in their lower indices, M ab are symmetric, and Mgpeq

are completely antisymmetric.

4.3 Second-order deformation

Next, we investigate the equations responsible for higher-order deformations. The second-
order deformation is governed by eq. (B.§). Making use of the first-order deformation
derived in the previous subsection, after some computation we organize the second term

on the left-hand side of (B.5) like
(S1,51) = /d4x (A+A), (4.83)

where

4
Pty oPtd
A = <Kabc aoc + Kabc abc
pzz() LT a@ml s 8(pmp dimi..mp a90m1 s 8(Pmp

Pt oPtl
e abed bedf %
+ gnc..].cmpa . Ca + I(jl,ml...mp 8 aa
Pmq - Somp Pmyq - - - (Pmp

K¢ 8ptgb 4.84
+ abmmy G o (4.84)
P

and
3 A A

A = Z ( xaB PT s 4 Xobed T bed

= T Yoy - OPm, T Qo e Opm,
pTA T Ac

+X?Xbm1...m & + gl?:ml...m 8#

7 POPmy - - - a@mp ’ PPy - - - &pmp
orT A AB PTip )

X v s
+ Aab,my...my 390m1 — a(pmp + a,mi...mp a@ml o atpmp
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PTLE

= T Doy e OPm,,

8pTAB apTABa
X4 D¢/ _
+XAB ,m1...Myp a‘ﬁml 8807711, + ABa,m1...myp &Pml -&Pmp
apTABCD apTABC
+ XaBcD — X% T 5
pz(:) < M ..My a@ml ] a@mp ABC,mj1...myp 880m1 ] a@mp
orrTs
ABC ABC a ABCD
+Xa7M1-..Mpm> + XasepTh .

In formulas ([£.84) and ([.85) we used the notations

W OWeq

WeeMS + W, 1%
abc ec b+ ea agp + eb o 8906

d
T b

7fgbc = We[ aQD + M, [aMbec] + MdeMeabCa
tabcdf = We[a a(pcef] +Me[abcM§f}a
= MbeWeaa
aMbc
tat = Wea—g— + Mg M,
e
oW, afA
Tab fabe +fA ab +Wea &pb +2Webf

A
T(;4B fA 8f fB af 4! (gABMféW + 2WeageAB) ,

& a(p e 880

oM
= fodV — Fi ' — g I

A A 8fAbj:
+f [gMbc}e —-2-4 eabMec + We[a e )
O e

Tl?jcd W, ela

a

Don + 4 avMea) + fM[afbcd
aMabcd
+ﬁ <§fé4 Dpe f bcd] >

o Mab
Pe

_ 2fAeaMbe _ 2fAebMae7

f‘)fb
abB fM fb +fcf% b+We[a e ’

dfaBc 5f aAC

TaABC:f Ae 890 f Be

,20,

2 aABC oP1 aABC abc abc
+ E X — 4+ X —avc
( AB,mq..mp 8()0 L aSOmp

+2f pafeBC — 2f o feac

(4.85)

(4.86)

(4.87)

(4.88)
(4.89)

(4.90)

(4.91)

(4.92)

(4.93)

(4.94)

(4.95)

(4.96)



)
+41 ( 9aBM Y+ Wea gai‘pBC + /] AgB]MC> (4.97)

Tip = feapM, (4.98)
Aaf(g)c B fabc Ae
Tabc = fe a(p f + 2f be] 2f be]
1 eAB AB agbc}
+_ge Mabce + 4! g Me + W,
2 ela b ela e
—4! (g M abc + f[Aa bB;%M) ) (499)

TABa _ fA af b fB af b anf + QfBeaf/};e

e agﬁe
AB 59aAB AB (M
st (g4 4 W20 )~ (g e
e
+2- AlggP M + g™ = fhig™™M) (4.100)
39 b AB
TABCD = gt AB FED — A= — : — 124148 gCIMD. (4.101)
ABC _ c[AB A(?gab . [AB_CIM | [AB ,Cle
TAPC = g PO — Ll — - 120390 + 9 o) (4.102)
a e a 8 BC] M a
Tipc = 9iapl e — 3 9o, — 129145 96 1> (4.103)
T;XBCD _ ge[ABgeC:lD]’ (4104)
CMD

where the functions gapc, g ,and gy BM result from gABM by appropriately lowering or

raising the two-form collection indices with the help of the metric k4p or its inverse k45:

gABC = kAMkBNgMN gC’MD — gC%kED

objects, of the type K or X, are listed in Appendix ] Each of them is a polynomial of

, QAB = kagkprg®t kNM. The remaining

ghost number 1 involving only the undifferentiated fields/ghosts and antifields. Comparing
eq. (B.H) with (f.83), we obtain that the existence of Sy requires that [d*z (A+ A) is
s-exact. This is not possible since all the objects denoted by K or X are polynomials
comprising only undifferentiated fields/ghosts/antifields, so (B.5)) takes place if and only if
the following equations are simultaneously obeyed

tabe = 0, tabc =0, tabcdf =0, b =0, tzc =0, (

TA=0, TP =0, T4 =0, Tabcd 0, TA® (
Thp =0, Tuapc=0, Tip=0, Taf=0, T*P*=0, (4.107
(
(

a

follows that we can take

Sy = 0. (4.109)
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On behalf of (.109) it is easy to show that one can safely set zero the solutions to the
higher-order deformation eqgs., (B.6)), etc.

Sp=0, k>2. (4.110)

Collecting formulas (JL109) and (JL110), we can state that the complete deformed
solution to the master equation for the model under study, which is consistent to all orders
in the coupling constant, reads as

S =S5+ \S, (4.111)

where S is given in (R.26) and S is expressed by (.81]). The full deformed solution to
the master equation comprises 11 types of smooth functions of the undifferentiated scalar
fields: Wy, My, Maped, Mab fabc, gg‘bB, 1A, f , A gAB. and ¢g*AB. They are subject
to egs. ([109)-([.10§), imposed by the consistency of the ﬁrst—order deformation.

5. Lagrangian formulation of the interacting model

The piece of antighost number 0 from the full deformed solution to the master equation,
of the form (f.111]), furnishes us with the Lagrangian action of the interacting theory

SU[AY HE o, B VA, VA = / d'z [HiD o, + BV EY,
+1 (VA FL, + VAVE)
—5ehP <ﬂ Mapea A A, + 3 faacaVi A}
—gaBeaViViP) A;Ai] ; (5.1)

where we used the notations

D“SDOL = aﬂ@a + )\WabAb# - %anVAH’ (52)

= Oy, AL + AMLAY AS + Neyy ) M B
+ <fAbA V] +9aABVMAVVB> ) (5.3)

Formula (p.1]) expresses the most general form of the Lagrangian action describing the
interactions between a finite collection of BF models and a finite set of two-form gauge
fields that complies with our working hypotheses and whose free limit is precisely action
(). We note that the deformed Lagrangian action is of maximum order 1 in the coupling
constant and includes two main types of vertices: one generates self-interactions among
the BF fields and the other couples the two-form field spectrum to the BF field spectrum.
The first type is already known from the literature and we will not comment on it. The
second is yielded by the expression

~ 3 AV HL + 3B (R ALV + ginVilVF)
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VMV <f ;L 1/] gBCAVpBVVC>
_%E,ul/p)\ (ngachﬂ Aff - gABchnyB) A;Agl\ (55)

We observe that the vector fields VA4* couple to all the BF fields from the collection,
while the two-form gauge fields V4" interact only with the one-forms Af, from the BF
sector. Also, all the interaction vertices are derivative-free (we recall that the various
functions that parameterize (b-1) depend only on the undifferentiated scalar fields). One
of this couplings, 2 5980 V“ VVB V¢, is nothing but the generalized version of non-Abelian
Freedman-Townsend vertex. (By ‘generalized’ we mean that its form is identical with the
standard non-Abelian Freedman-Townsend vertex up to the point that g BCA are not the
structure constants of a Lie algebra, but depend on the undifferentiated scalar fields.) Thus,
action (f.1) contains the generalized version of non-Abelian Freedman-Townsend action

SETIVA VA @] =1 / a'e (V4" (0,V + s VEVE ) + VAVE]. (5.6)

From the terms of antighost number 1 present in (J.111]) we read the deformed gauge
transformations (which leave invariant action (f.I))), namely

JeAL = (Dy)*, € — 2AM e pren”, (5.7)
- _ oM, a 1A
a v\a b A 1 bede 4 cv “Jbde y v d,
OcH), =2 (D ) b € T 2EuvpA [( 1275, A &Pa VA> A
e Vllvp AeA b )\ CHC bBV VB b
00 ] ( 9¢a Dpg A1) €
o (D" \ OM oMbe
_%Bd’”eb_ 2 asoZdAwAdp o 20750 Bewe" " ragy
JAc A 1098 Ave B
ZSAcy AV gep v Avy B 5
ot (v P o,
0 6
+ A wpr ( gprB vErabe 4 4 g AV§VCP> e, (5.8)
5590(1 = _)\Wabeba (59)

0B = —3(Dy), el + 2AWape™ — NP2 foapV P et — AMS,BE ¢
+AghPA (%MabchpAA + faancV, AS - %gABabvaVAB) e, (5.10)

gevu = Euvpx (DP)A BA fa H’V % (fAbaAbp - gaAng) €apvp
+)\ |:€W/P>\ ( fabcAbp + gacB Vp) ACA
+fBVE + %fﬁbBbW] €, (5.11)

SV = MipVile. (5.12)
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In (5.7)-(5.13) we employed the following notations for the various types of (generalized)
covariant derivatives:

(DM)", = opo" — X (%Aw = 1—12%];” VA“) ; (5.13)
(D)%, = 080, — AMELAS — X F4, VA, (5.14)
(Dp)," = 00 + A (MEAG + 5 AV (5.15)
(DM, = §A0" — AfL5 A 4 AgACLVE. (5.16)

It is interesting to see that the gauge transformations of all fields get modified by the de-
formation procedure. Also, the gauge transformations of the BF fields Hj} and B involve

AN which are specific to the two-form sector. Similarly, the gauge

the gauge parameters e
transformations of Vﬁ and Vf include pure BF gauge parameters. By contrast to the
standard non-Abelian Freedman-Townsend model, where the vector fields VMA are gauge-
invariant, here these fields gain nonvanishing gauge transformations, proportional with
the BF gauge parameters €*. The nonvanishing commutators among the deformed gauge
transformations result from the terms quadratic in the ghosts with pure ghost number 1
present in ([LIIJ)). The concrete form of the gauge generators and of the corresponding
nonvanishing commutators is included in Appendix B and [0, respectively (see relations
[B.1)-(B.16) and (D.1)-(D.19), respectively). With the help of these relations we observe
that the original Abelian gauge algebra is deformed into an open one, meaning that the
commutators among the gauge transformations only close on-shell, i.e. on the field equa-
tions resulting from the deformed Lagrangian action (p.1)). The deformed gauge generators
remain reducible of order two, just like the original ones, but the reducibility relations
of order one and two hold now only on the field equations resulting from the deformed
Lagrangian action (on-shell reducibility). The expressions of the reducibility functions and
relations are given in detail in Appendix [J (see formulas (C.1)—(C.26])). They are deduced
from certain elements in (JL.111)) that are linear in the ghosts with the pure ghost number
greater or equal to 2.

We recall that the entire gauge structure of the interacting model is controlled by
the functions Wy, Mg, Maped, Meab, ;llyc’ gab , fa, QB, AL o g4 C’ and ¢*4P which
are restricted to satisfy egs. (K.105)—({.108). Thus, our procedure is consistent provided
these equations are shown to possess solutions. We give below some classes of solutions to
(4.105)—(K.10§), without pretending to exhaust all possibilities.

e Type I solutions

1

A first class of solutions to eqgs. ( q) is given by

. 0w, Bch u
My, = 9 2, Maped = fe[ab M =0, (5.17)

where f.qp are arbitrary, antisymmetric constants and the functions W, are required

to fulfill the equations
Wy

0pe

We[a (518)
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We remark that all the nonvanishing solutions are parameterized by the antisym-
metric functions We,. Like in the pure BF case [pl]], we can interpret the functions
W like the components of a two-tensor on a Poisson manifold with the target space
locally parameterized by the scalar fields ¢.. Consequently, the first and third equa-

(]

tions among ([1.104) are verified if we take

aI/Vbc

fip = XNpla fol =K Wae,  f37 = —57k"
Pa

, (5.19)

where f, are arbitrary functions of ¢y, k¢ stand for some arbitrary constants, and
74 and )\AB ()\AB = —\BA \AB = kAC)\BC) represent some constants subject to the
conditions

MprB = 0. (5.20)

Inserting (p.19) into the second equation from (§.106), we obtain

9%ip = 394807k + papr®, (5.21)

where 1 4p are some arbitrary, antisymmetric constants and v (¢) are null vectors
of Wy (if the matrix of elements Wy, is degenerate), i.e.

Wopv® = 0. (5.22)

In the presence of the previous solutions the fourth equation from ([.106]) is solved
for

OW g

Ope
Due to the last relation in (F.17), it is easy to see that the fifth equation from (JL.106) is
now automatically satisfied. Next, we investigate eqs. ([.107). The former equation
is checked if we make the choice

A _ 1 _Ajd
abc_MT kfe[ab

(5.23)

fa=E"Wap, (5.24)

with k® some arbitrary constants. The next equation from (1.107) is fulfilled for

gapc = Capc(l+ x), )\AB = CCBATC, k* = E‘a, (5.25)
where x () has the property
Ix
Waw=—=0 5.26
ab 8<Pb ( )

(if Wy allows for nontrivial null vectors) and the completely antisymmetric constants
Capc are imposed to satisfy the Jacobi identity

CEA[BCDc’f =0. (5.27)

Now, the third equation from ([f.107) is automatically verified by the last relation in
(b-17). The solution to the fourth equation reads as

ga? = C* P Way,  pap =0. (5.28)
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So far we have determined all the unknown functions. The above solutions also fulfill
the remaining equations from (f.107) and the first three ones in ([.10§). However,

the last equation present in (f.10§) produces the restriction
CEUBCODIE rprp = 0. (5.29)

The last equation possesses at least two different types of solutions, namely

CABY = giikeleBel i 5k =1,2,3 (5.30)
and
ABC ABC;A;B;C 1 P A
C = £ lAlBlé’ A,B,C: 1,2,3,4, (531)

respectively, where ef‘ and lﬁ are all constants and €7 together with eABC are
completely antisymmetric symbols. These symbols are defined via the conventions
€2 = 41 and &' = 13 = 23 = 11 respectively. It is straightforward to see
that the quantities CABC given by either of the relations (F.30) or (5.31) indeed
check () By assembling the previous results, we find the type I solutions to eqgs.
(E109)-(B.108) being expressed via relations (.17), (5.23), and

ffB = CDBATDkaaba féA = TAchaca (532)
OWp,
40 = —%TAkca—(pb, gapc = Capc(1+ ), (5.33)

9% = 3Capc(1+ )Tk, gaP = 0B Wiy, (5.34)
where 74 and k% represent some arbitrary constants, Wy, are assumed to satisfy eqs.
(b.18), and x is subject to (5.26) (if the matrix of elements Wy, is degenerate). The

antisymmetric constants C4B¢ are imposed to verify relations (5.29) (which ensure

that (5.27) are automatically checked). Two sets of solutions to (5.29) (and hence
also to (5.27)) are provided by formulas (5.30)) and (f.31))).

Type 1I solutions

Another set of solutions to eqs. (.105) can be written as

Wa, =0, M =0CM, Myeq=0, M®=pu®M, (5.35)

with M and M arbitrary functions of the undifferentiated scalar fields. The coeffi-
cients u® represent the elements of the inverse of the Killing metric jiqq of a semi-
simple Lie algebra with the structure constants C¢ (fiaqu® = 6¢), where, in addition
Cube = ﬂadCdbc must be completely antisymmetric. Under these circumstances, the

first equation from (J£.104) is solved if we take

fB = 5‘ABJEUH f(f = UAfaa (5.36)

where f, and f, are arbitrary functions of the undifferentiated scalar fields, and XAB

A

as well as o' are some constants that must satisfy the relations

MooP = 0. (5.37)
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Then, the second equation from (f.106) implies the fact that g, = is restricted to
fulfill the condition
galoc =0. (5.38)

Replacing the above solutions into the third equation from ([.106)), we get the relation

oP

e = UAC%C%, f4, = 02CuweN, (5.39)
C

where P and N are functions of the undifferentiated scalar fields, with IV restricted
to verify the equation

f oM +4-4NM = 0. (5.40)
I¢pa

Having in mind the solutions deduced until now, we find that the fourth equation

from ({.106) is automatically checked and the last equation in ({l.106) constrains the

function M to be constant (for the sake of simplicity, we take this constant to be

equal to unity)

M=1. (5.41)

The first and the third equations from (.107) immediately yield fa = 0, which further
leads to ffB = 0. Under these circumstances, the second equation entering ([.107)
is identically satisfied and the fourth equation from the same formula possesses the

B 9Q
dp.’

solution

9B = Cppe? (5.42)

where @ is an arbitrary function of the undifferentiated scalar fields and A5 de-
note some arbitrary, completely antisymmetric constants. Substituting the solutions
deduced so far into the last equation from (f.107), we get

3 Jg
a =\ 5.43
9AB AB 9 a7 ( )

where ¢ is a function of the undifferentiated scalar fields that is restricted to fulfill
the equation

— = =M . 44
0o, 27 g, (5-44)

The first equation from ({f.108)) exhibits the solution

JABC = O'[AS\B]Cci)a (5.45)

with ® an arbitrary function of the undifferentiated scalar fields and Apc some arbi-
trary, completely antisymmetric constants, which check the relations

Apco® = 0. (5.46)

Relations (p.46) ensure that eq. (p.3§) is verified. The second equation from ({.108)
displays a solution of the form

MB = ANBICa,,, (5.47)
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with B¢ some constants. The remaining equations entering ([.108) are now identically
verified. Putting together the results obtained until now, it follows that the type II

solutions to eqs. ([.105)—(E.108) can be written as

Wap =0, o =CWM, Mgeq=0, M™®=p"® (5.48)
= oP
chLAB - 07 f&A - UAfaa fAba = UACabc—a (549)
0P,
_OM . . g
(ﬁ)c = _ﬁUACabCfda—gpd’ g(ﬁ)B = ﬁcach[AAB]CBCMa—%, (550)
a 3 C ag o N 2
gaB = 0laAB|cP , gABC = 0[aApc®. (5.51)

Opq

We recall that M . fas P, g, and $ are arbitrary functions of the undifferentiated
scalar fields and G¢, A Be, and o€ are some constants. In addition, the last two sets
of constants are imposed to fulfill eq. (F4@). The quantities x% are the elements
of the inverse of the Killing metric of a semi-simple Lie algebra with the structure

constants C° _,, where Cyp. must be completely antisymmetric.

ab’
e Type III solutions
The third type of solutions to (f.109) is given by

Wab =0, gb = chabw’ Mabcd = fe[abéecd}q, Mab =0, (552)

with w and ¢ arbitrary functions of the undifferentiated scalar fields, feab some ar-
bitrary, antisymmetric constants, and C’Cab the structure constants of a Lie algebra.
Let us particularize the last solutions to the case where

dib (/%m<pm>
d <l€:”gpn>

with k¢ some arbitrary constants, w an arbitrary, smooth function depending on

CC =k Wap, w(p) =q(p) = , (5.53)
l;:mgpm, and Wy, some antisymmetric constants satisfying the relations
Wa[chd} =0. (5.54)

Obviously, egs. (p.54) ensure the Jacobi identity for the structure constants Ccab’
Replacing (5.59) back in (f.59), we find

aVi/ab 7 8ch] b
Wap =0, - = s Maped = fojgp———, M*» =0, 5.55
b b= oo, bed = fefab e (5.55)
where
) i (ko)
Wy (5.56)
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Due to (b.54), it is easy to see that Wb satisfy the Jacobi identity for a Poisson
manifold A

A 8Wbc] .

e[aa—(pe -

Relations (p.55) and (b.57) emphasize that we can generate solutions correlated with

a Poisson manifold even if Wy, = 0. In this situation the Poisson two-tensor results

from a Lie algebra (see the first formula in (5.53) and (f.50)). It is interesting to

remark that the same equations, namely (p.54), ensure the Jacobi identities for both

0. (5.57)

the Lie algebra and the corresponding Poisson manifold. These equations possess at
least two types of solutions, namely

Wap = eijreherelp®, i,k =1,2,3 (5.58)

and

Wap = ,5,1010050¢,  a,b,c=1,2,3,4, (5.59)

where e’ p¢, 12, and p° are all constants and €;jk together with e;5, are completely
antisymmetric symbols, defined via the conventions €193 = +1 and €194 = €134 =
€234 = +1, respectively. If we tackle the remaining equations in a manner similar

to that employed at the previous cases, we infer that the third type of solutions to

(E105)-(B.108) is expressed by (F.55) and

fly =mpktWa, =0, fi*= —)\AIEC%, (5.60)
Pa
_ R _ . OW,
f(fbc = )\A (ﬁ[aWbc] + ﬁkdfe[ab 890 d}> y (561)
ga” = AmPICBeWaQ,  ghp =0, gapo = AampcP. (5.62)
In the above l%ba ];aa BCa feaba j‘Aa Wab (Wab = _Wba)a and mAB (mAB - _mBA) are

some constants, the first four sets being arbitrary (up to the point that feab should
be completely antisymmetric) and the last three sets being subject to the relations
(53) and

mABAp = 0. (5.63)

The quantities denoted by €2, g, Q, and P are arbitrary functions of the undifferen-
tiated scalar fields. The functions Wy, read as in (b.56), with w an arbitrary, smooth
function depending on /%mcpm. If in particular we take © and Q to be respectively of
the form of w and ¢ from (B.53), then we obtain that the functions f’; and g/4P will
be parameterized by Wb

6. Conclusion

To conclude with, in this paper we have investigated the consistent interactions that can

be introduced between a finite collection of BF theories and a finite set of two-form gauge

fields (described by a sum of Abelian Freedman-Townsend actions). Starting with the
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BRST differential for the free theory, we compute the consistent first-order deformation of
the solution to the master equation with the help of standard cohomological techniques, and
obtain that it is parameterized by 11 kinds of functions depending on the undifferentiated
scalar fields. Next, we investigate the second-order deformation, whose existence imposes
certain restrictions with respect to these functions. Based on these restrictions, we show
that we can take all the remaining higher-order deformations to vanish. As a consequence
of our procedure, we are led to an interacting gauge theory with deformed gauge transfor-
mations, a non-Abelian gauge algebra that only closes on-shell, and on-shell accompanying
reducibility relations. The deformed action contains, among others, the generalized version
of non-Abelian Freedman-Townsend action. It is interesting to mention that by contrast
to the standard non-Abelian Freedman-Townsend model, where the auxiliary vector fields
are gauge-invariant, here these fields gain nonvanishing gauge transformations, propor-
tional with some BF gauge parameters. Finally, we investigate the equations that restrict
the functions parameterizing the deformed solution to the master equation and give some
particular classes of solutions, which can be suggestively interpreted in terms of Poisson
manifolds and/or Lie algebras.
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A. Various notations used in subsection

The various notations used within formula ([.84) are listed below. The objects denoted by

b Q
<Kfﬁncl___mp)p:0 , are expressed by

Kabc = 77btp*c + QHGAbMHﬁ +92 <AauAb1/ _ 2B*a;u/77b> Cﬁy
*b, * b
+4 (et 4 3B A O,

4 < ap*burpA g prapy prbpA 4n*a;prb>\) HVP)"

Kglbc _ < AHY A% — CoH e b) ce, — Hifp HS
i <6H;pAauAbu _ 12H;pB*a;u/nb 4 GC;uunaAbp
C*Wp a b) Cﬁ,,p (_48H;)\B*a/uzAbp
+12C51 AP AP 16 H P PP — 24C5H Byt
_gcéquAaAnb _ C*quAnanb> e (A.2)

K& = =3 (C" HyPn® + 2H ' HY A) 1" Cy,
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—HIH " CS, + <—24H;“H:”B*“P’\nb
+12H M HY A% AP — 24C7" HP A%
—3CHCI ) + ACT P HIN ) Cypn,

Ky = =2 (A B HP A 4+ 3C7 HPHP " ) 1 Chypn

—HJ'H Hi" " Cy,
Kabc _ _H*MH*VH*/)H*A a. b e
Jdefg — d e f g nn LUPA®

The elements (K abe ) read as
p:

d,m1 -..Mp 0—4

Kt = (~20 AL AT + Biiat©) By — Agnfnf A
+ (—A;A*;A; + 61" Bt A + nbncnff;p) "
Sty + (124840 BiS + 120° BB

* * vpA
=811 1, AS, + nﬂipw“nb) M

Kt = (B AP + 5Cnnn) B
S H e A + (8H A A
3P B 4 30 A
R ) My + (244 H ) B
FAHTN AW A AP _ L gyrenve
L BEPN _ G o ABP AN
FECI AP + SO NP ) g,

chll?ecf = %H:HH}Wnanbnch,uu + %H:“H?/??aﬁbACpﬁde
SO H 0 gy + (GHZ H o B0
_GHJMH}WnaAprc)\ + GC:uVH}kpnanbAcA

* * *PA
+E3CIPH P e + 3 OFF n“nbnc) Tduvps
Kabc — (QH*H Y FH*P o bAc)\ C*,uuH*pH*)\ a, b _c
defg — e g +Ce f g ) Nduvp

+%H:“H;VHSP77G77b77€77de,

K§%on = s HIHF Hy? HE 0 10 Nduwpa-
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(A.3)

(A4)

(A.5)

(A.8)

(A.9)

(A.10)



.. bedf
The quantities (Kglf---mp)p:(]Aa <K1?,m1,,,mp>p:m, and (Kgb,ml...mp>p:074
Rl — oo [(Lasal - B ) Al + & (BB

=2t A% + %n,’i‘ipwb) ncnd} ',

Kgdef = %glﬂ//»\ [% (%C:pra + %C:uyp i + %C:uu ;g
5z ) i = H, (ALAL — 2B ) A
~3C, AL | 'y

epv

are given by

(A.11)

(A.12)

Kol — slyet | (2, Copa® + 55Co Copan® + Hiy CrAS) 1

2-4! 20 ~euv eu~ grvp

—H2Hg, (4345 = 2B55n") | ey’

bed, 1 VP IT* * 1 vk 1 ry* b d
K:gchf = M‘eu P HEMHQV (Toch,»ﬂ?a + §thA§) n 77677 77f,

abedf 1 VP IT* * * * a, b c d
Keghl - 2-4!-5!6M g HequuthHl)\n nnm 77f,

Ky = 4che? [2 (_CEWJWZ + CACLLVP Z/\) + CffuBpr

- (‘p*anbuupz\ - Hgnbup/\)] )

K&c = 45MVP)\ [nb;wp)\ (Ca CFOTRS L 00 C*XITR | (0@ (C*oT

OTKS —C OTK ~C oT —C

(A.13)

(A.14)

(A.15)

(A.16)

+HZHZ?) + Clypn (hornCe”™" + Boor C277 — 241, H?)

Hbwpa (3C30r O = 205, HZT) + 3By Gy HY

noT pvo

Kfiut = 465 [l (Clone (V27O 13027 C)

+3C5H7Cq™ + Cg  HI7Hy™)
+Cgup)\ (3Morn H7CYFT" + BboTH:UHZZT)] )

K eqe = 46" [yyupr (6Co o HEHFTCE 4+ C8

OTKS c OTK

+CﬁupA77baTmH:0H§TH;H] s

VpA *0 T *
Ky caer = Aeuwprly " Corp HZ7HHIVH Y,

OTKS Cc

Kgb = EHVP)\ |:_6 (T’gVUB{:)\Aﬁ- + 3nMOTnZJTB*cp)\>

a

_277(;;1//))\ (narng ko 277?7/6 Koy QBgTB;S—

b 770'7':‘i§ 770'7':‘6

—2A57 AG — 20511°) + A" AP — BLY Bf Avﬂ :
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(A.18)

H°H; H")

(A.19)

(A.20)

(A.21)



Kapa = €pwpx [—9775“”77§W (nCCZE” - 2AC’)H£?A>
" Mborrs (77002“ VA 4 4CHP AN
+12C;WB*cp)\ I SH;MW*CVM> I 6775”035%61{20
=20 (7" (0 Clyry + BALC,, — 6BIL H,)

+24570 Hyy + By™ (n°Cor + 247Hy,))] (A.22)

Koo = —ppn | 2067 (3157 (Hip Cor® + Hio H 27 AS)
+By" Hi, Hern) + 15 " Nboras ((4H;MC:VP/\
+3C§“”cgm) 0° + 12H O AN 4 12H 5P HY B*cm)

a

+9nh . H)P H;”nc] ; (A.23)

a

oT * *U P * *
Keyer = =22 umpn |10 Mhorws (3HF HZCPN + 2H HZ H} A™)

+775””A?7§T“H20H2‘7H?mc} : (A.24)
A
Ko derg = —EpwpAl " Moorne Hy' HZ H P H i . (A.25)
Next, we identify the various notations employed in formula ([.85). The polynomials
ngﬁl...ng’ X%?fglmp’ ngml___mp? X,(Zbc’ml__.mp’ XAab,ml...mp, and Xéglmp’ Wlth p = 0, 3’

can be written as
XPP = (Can® — 20 A9) n°CP + CfnP O
+3 (VAo =3V o) g O
—2 (VA B0 — V3 A%) AN CPe o0 + 2V AP CPe 0
+ (VX“”VJ-?, + V;“Vf) nanb . QVXB*annch)\E“VpA
VR A (AbpcBAeWA - anvﬁ) , (A.26)

X%?ﬁl = —% (QH;;TMI Czu + C:IlilVVXPAEHVpA + %C;ﬁypvjauupA> 77aanB
+ [(Cotevs + B Vi) A — 2B VB 4 OB
3 (CoVE + 2HVYP) 0 CPe ppr + HEE VA PV,
+H VY A (AbACB n zanB)\> Euvp, (A.27)

xabB _ _% (3H;kn“1 H;knl; VXM + C;kn[ﬁ“’H;f} VA)\> nancheuyp)\

A7m1m2 2

2

+SHMHY VE <2Aa)‘77bCB — naanBA) ELvpAs (A.28)

,33,



abB _ 1 ry* XU ¥ A, a, b~B
X - _EHmHlean{)gVAn n C 5uup>\a

Amimams

X%wd 12 c* nanbnc,’,}d 1 VXAayAprCAndeuup)\
_% [C:;MAZ + (VZMVB*GPA _ %VX"?*GVP)\) 6;“//))\} nbnc,’,}d
_{_% (VZMVAap _ QVXB*CWP) AbAncndg;wp)\,
Xl =~k [2H1 Oy + (Coe VA2 + 50V | m e
% |: C*;,I,V + QH*M V;‘kup) AaA _ QH;ul VAVB*apA] 77b77€77d5;wp>\
% o VuAapAbAn N7 1w prs
* *U A *| UV *
X%?f?fbamz = <H n o V;lkp lC [M Hn’f;]vfi\) Wanbﬁcndﬁ,wm
+6H*u H*V VpAaAnb,r}cndeuyp)\,
X%,)(r:rillmgmg = — 4' H*u H*y H*p V/\77a77b77077d€uup>\7
X3 = 5 (Cli = O3, A™) Chig 570 — HCaCh et
FEVi (12B1900Ch 0 + 0" Ch, = 34%CY,,,) - LV (24C),
*avp b *av, b b
8D\ — 6B CY,, — i H))

A ,mi VpA

/—\

1 n v*”wm“m aczyp
L QHEVIY 1 CvE) AR,
+1
2

H*u VV <4B*ap)\cbyp)\+ 3,’7acb _AapCZVp>

Xty = 3 (B HI VI + Ol HEL VA ) 0Cl 0

* *U b Ab
L Y (VANCh,, — AVEACE,, )

_ 1 rpxp gpxv gyp A, avb
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a,mims
—12Ht Hye VA2 (CBnaWp + 403*77W,;A) , (A.48)
X o s = —V6H M HY2 VACE ngyupn. (A.49)

The objects denoted by X120 X495 X4p 0 s and Xhp, 00 with p = 0,2,

mi...Mmp?
read as

XaABC _ _% (QC*A,LLVHB + V*A/JVv*BP/\E“VpA) CCT]a
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Xphe = g Ha VAPV PAC n e, 00, (A.52)

X4 = oty [(VAFVEA™ + VEVEB ) 1 — VAVEA® A | e 0

* KUY Y RPN
—ﬁ (QCAHV]_’; + VA” VBP 6Wp)\> n“nbnc, (A.53)

Xy = | (L VPV + G VEVE) e

+6H:1M1 VXV]_QAQ)\} 77b776€;wp>\, (A54)
XX mmims = T Ho Ho, VAV 0 1€ (A.55)
* KUV T rRPA
Xip = — g (ChaVEe"" = 12V V) Gl
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a _ 1 * *UPY A 1 vy Py 7\ a
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12 1241 VMVB ( a;w77b + 377auypAbp) s (A.59)

X%Ba,ml = _L (H*H V*Vp + lC*HVVP) V]E)i\nauup)\nb
+ L H IV (%an 477W,MAM> : (A.60)
XgBa,ml my 214' H*M H*V VPVB nauupAn (A.61)
In the end of this section we list the remaining type-X objects from ({.85)), namely
XABCD,my..myps XABle Ty and Xfﬁ? my» With p = 0,1, as well as X% 50 p:
Xapop = & (VA*“”V]_QVC%CD n %Vjvgvgcg) E s (A.62)
XABCD,ml 3. 4,H*H VA VpVC CDEW,p)\, (A.63)
Xelpe = & (VI VEVEn"n" = BVAVEVEA™D) e, (A-64)
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XABCD = _%VMVBVI)VD” Euvp- (A'68)

B. Gauge generators of the deformed model

From the terms of antighost number 1 present in (JL111)) we determine the deformed gauge
generators that produce the deformed gauge transformations (p.7)-(f.12). We added a
supplementary index between parentheses to the gauge generators such as to distinguish
among the fields to which the gauge generators are associated with. We list below only the

nonvanishing generators of the various fields, which read as:
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afb 8gb
A Ac A pc AB B
‘|‘I (a@a O-M[O‘Vﬁ A’Y} — a—% o Vﬁ V’Y]) (B4)
= 0 L 0gP
(ZZ(H))i = AguupAU ( afprB v Bv A ‘|‘ 5 g AVB Vp> (B.5)
(Z8a))b = 040, — AMGLAS — 35 F4 Vi, (B.6)
( _3<A>)3m = —2AM Epafys (B.7)

(Zs(VB)) = )\E,ul/p)\ ( abch A)\ + anch A)\ ngBaprAVAB)

—AMg, B, (B.8)

(Zha)y” = AWaotlea Y, (B.9)
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(Zs(VB))A = AP foapVy>, (B.11)

(Ziwy)a = MagVil, (B.12)

(Z ) = MBVE + 310 By + Aepups (31 A + A2 VE) A2 (B.13)
(Ziau)e? = g £, (B.14)

(Z,f‘y(v))gm =4 (f’%aAg aABVBo) UWJVA5[ 5307 e (B.15)
(Zih))Bx = Euvpa (040° — A A% + MgV . (B.16)

C. Reducibility of the deformed gauge transformations

From the terms of antighost number 2 in ([l.111]) that are simultaneously linear in the
ghosts for ghosts and in the antifields of the ghosts we identify the first-order reducibility

functions for the coupled model as

(D W afh
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(ZDPIYIP = AW, <Ja[uav}ﬁ0m 4+ gV gPlB iy 4 Ua[pau}ﬁaw) , (C.5)
(ZDB7) 4 = — 307 £ 5, Vs, (C.6)
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(Ze = dfdowe, (C.8)
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(ZWN 55 = —2Xeapys M. (C.10)

The first-order reducibility relations of the coupled theory result from the components of
(B.111) with the antighost number equal to 2 that are simultaneously linear in the ghosts
for ghosts and quadratic in the antifields of the original fields, being expressed in De Witt
condensed form as
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The deformed gauge generators are given in (B-1)—(B-I6) and S represents the deformed
Lagrangian action (b.1)).

The pieces of antighost number 3 from ([L111)) that are simultaneously linear in the
ghosts for ghosts for ghosts and in the antifields of the ghosts for ghosts offer us the
second-order reducibility functions for the interacting model of the form

(Z(Q)A)ZUpA _ %ff&uyl»\, (021)
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TESy

where Sy denotes the set of permutations of {1,2,3,4} and (—)" is the signature of a given
permutation 7. By means of the terms with the antighost number equal to 3 present in
(B.111)) that are linear in the ghosts for ghosts for ghosts and also quadratic in antifields
we infer the second-order reducibility relations for the interacting model in condensed De
Witt form, which read as
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D. Gauge algebra of the deformed model

The nonvanishing commutators among the deformed gauge transformations (f.7)-(p.12)
result from the terms quadratic in the ghosts with pure ghost number 1 present in (JL111]).
By analyzing these terms and taking into account the expressions (B.1])-(B.16), we deduce
the following nonvanishing relations:
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